Neural Implicit Surface Reconstruction from Noisy Camera Observations
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Abstract

Representing 3D objects and scenes with neural
radiance fields has become very popular over the
last years. Recently, surface-based representa-
tions have been proposed, that allow to recon-
struct 3D objects from simple photographs. How-
ever, most current techniques require an accurate
camera calibration, i.e. camera parameters corre-
sponding to each image, which is often a difficult
task to do in real-life situations. To this end, we

propose a method for learning 3D surfaces from

noisy camera parameters. We show that we can
learn camera parameters together with learning
the surface representation, and demonstrate good
quality 3D surface reconstruction even with noisy
camera observations.

Introduction

Representing 3D objects and scenes with neural net-
works has gained significant traction recently. In |1,
NeRF is proposed, Neural Radiance Fields, where a
neural network is used for volumetric representation
of the scene. However, a volumetric representation
is not the best representation in many cases; many
objects like faces are better represented using sur-
faces. For this, |2|, called NeusS, proposed to use
neural implicit surfaces together with volume ren-

dering for multi-view reconstruction. [3| addressed

another shortcoming of NeREF method to work on
image data when camera calibration data is absent.
It jointly estimates the scene representation and op-
timises for the camera parameters. We propose to
marry the benefits of each of these approaches: We
propose a method to learn a neural implicit sur-
face based representation of objects from noisy cam-
era observations. We show that the classical NeudS
method fails to learn an object completely if camera
parameters are not precise, whereas our approach
succeeds.

Figure 1:(Left). [2] with ground truth camera parameters.
(Centre): |2] with noisy camera parameters. (Right): Our
approach with noisy camera parameters. The lower images
represent the actual image of the object while the upper image

is the rendered image of the reconstructed surtace.

Methodology(continued)

The extrinsic parameters are expressed as a 4 X 4
camera-to-world space transformation matrix with
Tye = [R|t] where R € SO(3) and t € R’ de-
note the camera rotation and translation, respec-
tively. We take the sensor’s centre as the principal
point, and we assume that the same camera takes
all input images. Thus, estimating the camera in-
trinsics simplifies to finding the focal length.

The network, including the camera parameters, is
trained on images of a scene using a weighted lin-

ear combination of Eikonal-loss [4], colour-loss, and
mask-loss masking out the background.

Important Result

Our method outperforms the existing method by being able to learn an equal or more accurate object
representation, even in the presence of significant noise in the camera parameters.

Methodology

We begin with |3|, where a NeRF are made learn-
able to converge to values that result in desirable re-
constructions. While 3] works with unknown cam-
era parameters for only forward-facing input images
with rotational and translational perturbations of up
to +=20°, our approach works successtully on images

from 360° view angles. The latter results in a much
harder problem that is prone to local optima that
do not produce good results when learning camera
parameters from scratch. The implicit surface based
network of 2|, NewsS, consists of two MLPs to en-
code a signed distance function (SDF) and colour,
respectively. We add two modules that make both
the extrinsic and intrinsic camera parameters learn-

able.

Results

Figure 2:(left): Vanilla NeuS with ground-truth camera pa-
rameters (baseline-gt). (right): Our method, with very noisy
initialisation (learnable-noisy). The top shows the neural ren-

dering, the bottom shows the ground truth.

In noisy camera parameter setting, our method
produces reconstructions visually indistinguishable
from baseline NeuS and produces a final reconstruc-
tion loss and Peak Signal-to-Noise Ratio (PSNR)
similar to the baseline with an equal number of it-
erations.

Conclusion

While comparing our work to the current 3D surface
reconstruction state-of-the-art in a noisy parameter
setting, we have found that the existing method fails
as soon as camera parameters are not accurate. Our
method outperforms the existing method by being
able to learn an equal or more accurate object repre-
sentation, even in the presence of significant noise in
the camera parameters. Our work broadens the use
cases of neural implicit surface based object recon-
struction, by removing the need for accurate camera
calibration information, and increasing the robust-
ness to errors.

However, there is still much scope for work in this
field, as reconstructing the surface from completely
unknown camera parameters is still an open problem
for 360° view angles. To tackle this, we would like
to investigate an approach to learning surface recon-
struction from unknown camera parameters. Fur-
thermore, we plan to apply our method to a multi-
view reconstruction benchmark, where 3D shape ac-
curacy is evaluated.
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