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Abstract

In visual adaptive tracking, the tracker adapts to the target, background, and conditions of the image sequence. Each update
introduces some error, so the tracker might drift away from the target over time. To increase the robustness against the drifting
problem, we present three ideas on top of a particle filter framework: An optical-flow-based motion estimation, a learning strategy
for preventing bad updates while staying adaptive, and a sliding window detector for failure detection and finding the best training
examples. We experimentally evaluate the ideas using the BoBoT dataset®. The code of our tracker is available online®.
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1. Introduction

The goal of visual tracking is to determine the location of a target in each frame or to detect its disappearance. If
the target is known beforehand, a classifier can be trained with all appearances and a reasonable number of negatives.
However, if the target appearance is unknown or somehow not involved in the classifier training, then it might be
missed. Algorithms that update the classifier while tracking are able to follow the target in these situations, adapting
to the appearance, background, and recording conditions. This is useful in HCI scenarios, e.g. where a robot has to
keep track of the person it is interacting with regardless of pose, (out-of-plane) rotations, illumination changes etc.

Adaptive trackers usually start with a single annotated frame that indicates the location of the target, e.g. by using
a bounding box. The goal of the tracker is to estimate the new target position in each of the following frames and to
detect when the target is missing. If the tracker does not adapt itself, then it might lose the target, but if it does, then
it will introduce errors with each update!. We refer to Wu et al.? for a recent survey of adaptive tracking algorithms.

2 ”Bonn Benchmark on Tracking”, http://www.iai.uni-bonn.de/~kleind/tracking/
b http://adaptivetracking.github.io/
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Typically, adaptive tracking algorithms use the estimated target position as the positive training example>*3, but
there are also approaches that use semi-supervised learning algorithms to determine the optimal positive training
examples®’. STRUCK? avoids the problem of assigning binary labels (target vs. background) altogether by learning
the target displacement using structured output prediction. Because of costly computation, STRUCK only searches
at the initial scale and therefore cannot adapt the bounding box size after the first frame. The tracker of Klein and
Cremers? builds upon a particle filter for estimating the target state. The classification confidence of the target position
is used to decide whether a boosted classifier is updated. Tracking-Learning-Detection (TLD)* combines an optical-
flow-based tracker and a sliding window detector that correct each other’s errors. Supanci¢ I11 and Ramanan® proposed
a tracker that re-evaluates past decisions and corrects errors made in previous frames, but was not designed to run in
real-time. A very fast tracker was presented by Kolarow et al.>. To achieve more than real-time speed, they reduced
the object model to a single sparse template that is created anew in every frame unless an occlusion is detected.

The core contribution of our work is the fusion of a particle-filter-based adaptive tracker with three enhancements
and evaluating their influence on the tracking performance. (1) Optical flow incorporates the current measurement
into the prediction, which leads to a better proposal distribution, so the particles can follow the target more closely
even under rapid movements. (2) The introduction of a simple learning condition reduces drift by only updating
with confident target locations. (3) Adding a sliding window detector increases the quality of the negative training
examples, while also enabling fast re-detection and failure detection. By combining these ideas on top of an adaptive
particle filter framework we obtain a robust real-time tracking algorithm.

2. Tracking algorithm and its extensions

Our baseline algorithm is similar to the one of Klein et al.'®. The main differences are in the motion model and
choice of features and classifier. The tracking system estimates the state X = (x,y, s, X, ¥, §)7 of the target, which
consists of position, size and change of these. The aspect ratio is fixed and will be set at the initial frame. A particle
filter'! estimates the probability distribution of the target state at time ¢ using a set of particles S, = {s}, k € {1,...,n}.
Each particle s¢ = (x¥, 7%) consists of a state x* and an importance factor (weight) 7%, which is computed by the
measurement model using the current frame. The target state is then calculated as the weighted mean over all particle
states X, = ﬁ Yr_; mxk. If the classifier score of the estimated target position falls below a threshold, the target is
considered lost. This may happen in the case of occlusions, leaving the field of view or drifting away from the real

target. Next, we describe three essential parts of the tracker and the enhancements on top of them.
2.1. Motion model

In the baseline tracker, we apply a simple constant velocity motion model to predict the new target state before
incorporating the new measurement. The first extension is to estimate the actual motion of the target by computing the
optical flow, resulting in a more accurate optical-flow-based motion model. We use the method of Kalal et al. '2, where
the flow between the previous and current frame is estimated by a regular grid of points within the target bounding
box. To reduce the likelihood of the points capturing the background, we changed the grid to an inset circle-like shape.

2.2. Classifier update

The classifier is re-trained using supervised learning. There are two key assumptions for generating new labeled
training data: the smoothness of the trajectory and the uniqueness of the target. If the target’s movement is fairly
smooth, the tracker is able to follow it closely, which makes it possible to extract new positive training examples from
the estimated target position in each frame. If the target is considered to be unique, then any training example extracted
from the remainder of the frame has to have a negative label. As long as the tracker provides a target position, the
classifier can be re-trained using the new training examples from the current frame. To prevent adapting to wrong
objects such as occluders, we do not update the classifier if the estimated target location is classified as negative.

Updating the classifier immediately after each frame keeps it up-to-date and leads to a quick adaptation to changes,
but also drifts away quickly in case of erroneous updates. Extending the tracker with a learning condition® prevents
updates in uncertain situations. Our base tracker already has a weak learning condition, as our classifier is only
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updated if the estimated target location is being classified as positive, which is equivalent to an SVM score threshold
of 0. With this extension, we employ a higher threshold which leads to more conservative updates, so fewer frames
are used to select new examples for re-training the classifier, and the likelihood for adding bad examples is reduced.

For training the classifier we use libSVM '3, Because it uses batch learning, the time needed depends on the size
of the training set. To limit the update time, we restrict the size of the training set'’, so there are at most 20 positive
and 100 negative examples. The oldest negative training examples are replaced by strong negatives sampled from the
current frame, while positive examples are replaced based on their classification confidence.

2.3. Measurement model

To compute the importance factor of a particle, we first extract 13-dimensional extended HOG features ' from a
gray-scale image pyramid. These features are fairly invariant to out-of-plane rotations, as they capture the shape of an
object. A linear support vector machine (SVM) then computes a score d* = w; - ¢,(s¥) + p, for the particle s¥, where
w, is the weight vector and p;, is the bias of the SVM, and ¢, extracts the features from frame 7. The last step is to
transform this score into the measurement probability 7% = 5 (1 + e~ 4)~1 of the particle using a sigmoid function
with parameter A controlling the slope. The normalization factor n ensures that all particle weights sum up to one.

The third extension to our tracking algorithm is a combination with a sliding window detector. The latter is respon-
sible for a fast re-detection in case of a tracking failure or after occlusions, and finding the strongest negative training
examples in the background without relying on random selection. A disadvantage is the additional computational
burden. To accommodate this, the sliding-window-based measurement model can get the SVM score directly from
the responses generated by the sliding window approach instead of computing features and score on a per-particle
basis. That even speeds up the whole tracking compared to the original version, because when using a linear SVM,
computing the classifier responses over the image is just a convolution on each layer of the feature pyramid. The
disadvantage is a coarser measurement model, as the resolution of the measurements then is a HOG cell instead of a
pixel. This also leads to a worse quality of the positive training example, because it might be few pixels off, which re-
sults in an inaccurate classifier and the tracker will eventually drift. Therefore, we extract the features of the estimated
position directly from the gray-scale image pyramid, just as without the addition of the sliding window approach.

3. Experiments

The evaluation is done using the BoBoT dataset %3, consisting of 13 image sequences. They show pedestrians
and arbitrary objects, featuring challenging conditions like lighting changes, partial and full occlusions, out-of-plane
rotations, changing background, and distracting objects. The overlap of the bounding boxes (ratio of intersection to
union) is computed for each frame and averaged over the whole sequence, resulting in a score. To compensate for the
random nature of particle filters, each sequence was tested 20 times with our tracker and the results were averaged.

The optical flow (OF) improves the prediction of the new target position, but fails if the target is subject to out-
of-plane rotations (seq. A) or is partially occluded (seq. I, Ja). The learning condition (LC) reduces bad updates.
This is especially notable when combining both ideas (OF+LC), as optical flow leads to the particles following the
occluder, but the score threshold prevents the adaptation and enables re-detection of the correct target after the occlu-
sion. Both extensions increase the performance. When adding the sliding-window-based measurement model on top
(OF+LC+SW), the tracker runs more than twice as fast (60 fps compared to 25 fps), but the performance decreases
on average. This is because the localization accuracy suffers from the coarse resolution of the measurements, which
consequently decreases the quality of the positive training examples.

We compare our variations with the adaptive particle filter tracking of Klein and Cremers?, the color based hyper-
real-time tracker of Kolarow et al.’, TLD of Kalal et al.* and the self-paced learning based tracker (SPLTT) of
Supanéi¢ ITT and Ramanan®. For the first two trackers, we took the results from the respective papers. The last four
scores of > are missing, because the evaluation was done using an older version of the dataset. For better comparison
we additionally show the average scores of the first nine sequences. For the other two trackers, we used the code that
is openly available®. Detailed results are shown in Table 1.

¢ https://github.com/zk00006/OpenTLD and https://github.com/jsupancic/SPLTT-Release
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Table 1: Comparison of tracking algorithms. BT = Base Tracker, OF = Optical Flow, LC = Learning Condition, SW = Sliding Window
Seq. average overlap [%]
BT OF LC OF+LC OF+LC+SW Klein? Kolarow? Kalal* Supangic®

A 76.6 534 71.5 80.2 80.3 62.0 69.2 46.7 80.8
B 729 74.2 71.3 81.6 81.7 83.7 80.4 58.4 74.5
C 76.9 76.6 76.8 77.1 71.1 92.1 67.9 64.6 62.4
D 68.4 79.6 74.7 79.9 61.3 80.9 80.6 67.6 72.8
E 79.1 81.5 80.2 84.5 71.3 85.5 86.0 79.3 78.9
F 53.7 58.4 55.0 58.6 58.6 64.4 56.1 479 57.5
G 59.5 63.4 55.4 63.1 312 74.5 87.1 59.0 45.6
H 843 87.2 86.3 88.4 88.2 96.1 98.3 86.1 86.0
I 62.0 51.1 71.3 69.7 67.8 83.3 71.7 433 57.3
Ja 48.3 42.4 75.8 80.4 78.6 83.1 - 35.1 58.8
Jb 68.2 71.6 74.3 71.7 81.9 80.6 - 53.0 58.3
K 49.2 69.5 49.5 68.8 77.0 84.1 - 55.1 69.2
L 71.8 80.5 74.6 81.4 63.8 85.8 - 39.4 63.2
avg (A-I) 70.4 69.5 72.1 75.9 67.9 80.3 78.1 61.4 68.4
avg (A-L) 67.0 68.4 71.0 76.3 70.2 81.2 - 56.6 66.6

While we could increase the performance of our tracker, it does not outperform all the others. The goal of Kolarow
et al. was to create a very fast tracker, so they did not aim for re-detectability after long occlusions. This disadvantage
is not reflected within the results, because the dataset does not contain a sequence with this problem. The results for
Kalal et al. and Supanci¢ III and Ramanan are a bit below the others, however they did not optimize their parameters
towards the BoBoT dataset, as the others have done while testing different variations of their trackers against it.

4. Conclusion and further work

We proposed the fusion of a particle filter with other tracking techniques to increase the robustness of adaptive
tracking. We compared the variants and showed the applicability of the resulting tracker in real-world scenarios.
While the optical-flow-based motion model and the learning condition improve the performance, the sliding-window-
based measurement model increases the efficiency. The choice of the learning threshold is quite crucial - if it is too
low or too high, then there might be bad updates or none at all, depending on the conditions of the video. Therefore,
in future work we will explore the possibility of having an adaptive threshold or find other ways around this problem.
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