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Abstract

In visual adaptive tracking, the tracker adapts to the target, background, and conditions of the image sequence. Each update

introduces some error, so the tracker might drift away from the target over time. To increase the robustness against the drifting

problem, we present three ideas on top of a particle filter framework: An optical-flow-based motion estimation, a learning strategy

for preventing bad updates while staying adaptive, and a sliding window detector for failure detection and finding the best training

examples. We experimentally evaluate the ideas using the BoBoT dataseta. The code of our tracker is available onlineb.
c© 2014 The Authors. Published by Elsevier B.V.
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1. Introduction

The goal of visual tracking is to determine the location of a target in each frame or to detect its disappearance. If

the target is known beforehand, a classifier can be trained with all appearances and a reasonable number of negatives.

However, if the target appearance is unknown or somehow not involved in the classifier training, then it might be

missed. Algorithms that update the classifier while tracking are able to follow the target in these situations, adapting

to the appearance, background, and recording conditions. This is useful in HCI scenarios, e.g. where a robot has to

keep track of the person it is interacting with regardless of pose, (out-of-plane) rotations, illumination changes etc.

Adaptive trackers usually start with a single annotated frame that indicates the location of the target, e.g. by using

a bounding box. The goal of the tracker is to estimate the new target position in each of the following frames and to

detect when the target is missing. If the tracker does not adapt itself, then it might lose the target, but if it does, then

it will introduce errors with each update1. We refer to Wu et al. 2 for a recent survey of adaptive tracking algorithms.

a ”Bonn Benchmark on Tracking”, http://www.iai.uni-bonn.de/∼kleind/tracking/
b http://adaptivetracking.github.io/
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Typically, adaptive tracking algorithms use the estimated target position as the positive training example3,4,5, but

there are also approaches that use semi-supervised learning algorithms to determine the optimal positive training

examples6,7. STRUCK8 avoids the problem of assigning binary labels (target vs. background) altogether by learning

the target displacement using structured output prediction. Because of costly computation, STRUCK only searches

at the initial scale and therefore cannot adapt the bounding box size after the first frame. The tracker of Klein and

Cremers3 builds upon a particle filter for estimating the target state. The classification confidence of the target position

is used to decide whether a boosted classifier is updated. Tracking-Learning-Detection (TLD)4 combines an optical-

flow-based tracker and a sliding window detector that correct each other’s errors. Supančič III and Ramanan9 proposed

a tracker that re-evaluates past decisions and corrects errors made in previous frames, but was not designed to run in

real-time. A very fast tracker was presented by Kolarow et al. 5. To achieve more than real-time speed, they reduced

the object model to a single sparse template that is created anew in every frame unless an occlusion is detected.

The core contribution of our work is the fusion of a particle-filter-based adaptive tracker with three enhancements

and evaluating their influence on the tracking performance. (1) Optical flow incorporates the current measurement

into the prediction, which leads to a better proposal distribution, so the particles can follow the target more closely

even under rapid movements. (2) The introduction of a simple learning condition reduces drift by only updating

with confident target locations. (3) Adding a sliding window detector increases the quality of the negative training

examples, while also enabling fast re-detection and failure detection. By combining these ideas on top of an adaptive

particle filter framework we obtain a robust real-time tracking algorithm.

2. Tracking algorithm and its extensions

Our baseline algorithm is similar to the one of Klein et al. 10. The main differences are in the motion model and

choice of features and classifier. The tracking system estimates the state x = (x, y, s, ẋ, ẏ, ṡ)T of the target, which

consists of position, size and change of these. The aspect ratio is fixed and will be set at the initial frame. A particle

filter11 estimates the probability distribution of the target state at time t using a set of particles S t = {sk
t }, k ∈ {1, . . . , n}.

Each particle sk
t = (xk

t , π
k
t ) consists of a state xk

t and an importance factor (weight) πk
t , which is computed by the

measurement model using the current frame. The target state is then calculated as the weighted mean over all particle

states x̄t =
1
n
∑n

k=1 π
k
t xk

t . If the classifier score of the estimated target position falls below a threshold, the target is

considered lost. This may happen in the case of occlusions, leaving the field of view or drifting away from the real

target. Next, we describe three essential parts of the tracker and the enhancements on top of them.

2.1. Motion model

In the baseline tracker, we apply a simple constant velocity motion model to predict the new target state before

incorporating the new measurement. The first extension is to estimate the actual motion of the target by computing the

optical flow, resulting in a more accurate optical-flow-based motion model. We use the method of Kalal et al. 12, where

the flow between the previous and current frame is estimated by a regular grid of points within the target bounding

box. To reduce the likelihood of the points capturing the background, we changed the grid to an inset circle-like shape.

2.2. Classifier update

The classifier is re-trained using supervised learning. There are two key assumptions for generating new labeled

training data: the smoothness of the trajectory and the uniqueness of the target. If the target’s movement is fairly

smooth, the tracker is able to follow it closely, which makes it possible to extract new positive training examples from

the estimated target position in each frame. If the target is considered to be unique, then any training example extracted

from the remainder of the frame has to have a negative label. As long as the tracker provides a target position, the

classifier can be re-trained using the new training examples from the current frame. To prevent adapting to wrong

objects such as occluders, we do not update the classifier if the estimated target location is classified as negative.

Updating the classifier immediately after each frame keeps it up-to-date and leads to a quick adaptation to changes,

but also drifts away quickly in case of erroneous updates. Extending the tracker with a learning condition3 prevents

updates in uncertain situations. Our base tracker already has a weak learning condition, as our classifier is only
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updated if the estimated target location is being classified as positive, which is equivalent to an SVM score threshold

of 0. With this extension, we employ a higher threshold which leads to more conservative updates, so fewer frames

are used to select new examples for re-training the classifier, and the likelihood for adding bad examples is reduced.

For training the classifier we use libSVM13. Because it uses batch learning, the time needed depends on the size

of the training set. To limit the update time, we restrict the size of the training set10, so there are at most 20 positive

and 100 negative examples. The oldest negative training examples are replaced by strong negatives sampled from the

current frame, while positive examples are replaced based on their classification confidence.

2.3. Measurement model

To compute the importance factor of a particle, we first extract 13-dimensional extended HOG features14 from a

gray-scale image pyramid. These features are fairly invariant to out-of-plane rotations, as they capture the shape of an

object. A linear support vector machine (SVM) then computes a score dk
t = wt · φt(sk

t ) + ρt for the particle sk
t , where

wt is the weight vector and ρt is the bias of the SVM, and φt extracts the features from frame t. The last step is to

transform this score into the measurement probability πk
t = η (1 + e−λdk

t )−1 of the particle using a sigmoid function

with parameter λ controlling the slope. The normalization factor η ensures that all particle weights sum up to one.

The third extension to our tracking algorithm is a combination with a sliding window detector. The latter is respon-

sible for a fast re-detection in case of a tracking failure or after occlusions, and finding the strongest negative training

examples in the background without relying on random selection. A disadvantage is the additional computational

burden. To accommodate this, the sliding-window-based measurement model can get the SVM score directly from

the responses generated by the sliding window approach instead of computing features and score on a per-particle

basis. That even speeds up the whole tracking compared to the original version, because when using a linear SVM,

computing the classifier responses over the image is just a convolution on each layer of the feature pyramid. The

disadvantage is a coarser measurement model, as the resolution of the measurements then is a HOG cell instead of a

pixel. This also leads to a worse quality of the positive training example, because it might be few pixels off, which re-

sults in an inaccurate classifier and the tracker will eventually drift. Therefore, we extract the features of the estimated

position directly from the gray-scale image pyramid, just as without the addition of the sliding window approach.

3. Experiments

The evaluation is done using the BoBoT dataset10,3, consisting of 13 image sequences. They show pedestrians

and arbitrary objects, featuring challenging conditions like lighting changes, partial and full occlusions, out-of-plane

rotations, changing background, and distracting objects. The overlap of the bounding boxes (ratio of intersection to

union) is computed for each frame and averaged over the whole sequence, resulting in a score. To compensate for the

random nature of particle filters, each sequence was tested 20 times with our tracker and the results were averaged.

The optical flow (OF) improves the prediction of the new target position, but fails if the target is subject to out-

of-plane rotations (seq. A) or is partially occluded (seq. I, Ja). The learning condition (LC) reduces bad updates.

This is especially notable when combining both ideas (OF+LC), as optical flow leads to the particles following the

occluder, but the score threshold prevents the adaptation and enables re-detection of the correct target after the occlu-

sion. Both extensions increase the performance. When adding the sliding-window-based measurement model on top

(OF+LC+SW), the tracker runs more than twice as fast (60 fps compared to 25 fps), but the performance decreases

on average. This is because the localization accuracy suffers from the coarse resolution of the measurements, which

consequently decreases the quality of the positive training examples.

We compare our variations with the adaptive particle filter tracking of Klein and Cremers3, the color based hyper-

real-time tracker of Kolarow et al. 5, TLD of Kalal et al. 4 and the self-paced learning based tracker (SPLTT) of

Supančič III and Ramanan9. For the first two trackers, we took the results from the respective papers. The last four

scores of5 are missing, because the evaluation was done using an older version of the dataset. For better comparison

we additionally show the average scores of the first nine sequences. For the other two trackers, we used the code that

is openly availablec. Detailed results are shown in Table 1.

c https://github.com/zk00006/OpenTLD and https://github.com/jsupancic/SPLTT-Release
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Table 1: Comparison of tracking algorithms. BT = Base Tracker, OF = Optical Flow, LC = Learning Condition, SW = Sliding Window

Seq. average overlap [%]

BT OF LC OF+LC OF+LC+SW Klein 3 Kolarow 5 Kalal 4 Supančič 9

A 76.6 53.4 71.5 80.2 80.3 62.0 69.2 46.7 80.8

B 72.9 74.2 77.3 81.6 81.7 83.7 80.4 58.4 74.5

C 76.9 76.6 76.8 77.1 71.1 92.1 67.9 64.6 62.4

D 68.4 79.6 74.7 79.9 61.3 80.9 80.6 67.6 72.8

E 79.1 81.5 80.2 84.5 71.3 85.5 86.0 79.3 78.9

F 53.7 58.4 55.0 58.6 58.6 64.4 56.1 47.9 57.5

G 59.5 63.4 55.4 63.1 31.2 74.5 87.1 59.0 45.6

H 84.3 87.2 86.3 88.4 88.2 96.1 98.3 86.1 86.0

I 62.0 51.1 71.3 69.7 67.8 83.3 77.7 43.3 57.3

Ja 48.3 42.4 75.8 80.4 78.6 83.1 - 35.1 58.8

Jb 68.2 71.6 74.3 77.7 81.9 80.6 - 53.0 58.3

K 49.2 69.5 49.5 68.8 77.0 84.1 - 55.1 69.2

L 71.8 80.5 74.6 81.4 63.8 85.8 - 39.4 63.2

avg (A-I) 70.4 69.5 72.1 75.9 67.9 80.3 78.1 61.4 68.4

avg (A-L) 67.0 68.4 71.0 76.3 70.2 81.2 - 56.6 66.6

While we could increase the performance of our tracker, it does not outperform all the others. The goal of Kolarow

et al. was to create a very fast tracker, so they did not aim for re-detectability after long occlusions. This disadvantage

is not reflected within the results, because the dataset does not contain a sequence with this problem. The results for

Kalal et al. and Supančič III and Ramanan are a bit below the others, however they did not optimize their parameters

towards the BoBoT dataset, as the others have done while testing different variations of their trackers against it.

4. Conclusion and further work

We proposed the fusion of a particle filter with other tracking techniques to increase the robustness of adaptive

tracking. We compared the variants and showed the applicability of the resulting tracker in real-world scenarios.

While the optical-flow-based motion model and the learning condition improve the performance, the sliding-window-
based measurement model increases the efficiency. The choice of the learning threshold is quite crucial - if it is too

low or too high, then there might be bad updates or none at all, depending on the conditions of the video. Therefore,

in future work we will explore the possibility of having an adaptive threshold or find other ways around this problem.
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